Introducción

Dentro del sector de la Alimentación, el Poliestireno Expandido-EPS está consolidado como el material de envase más utilizado para el envasado de pescado fresco y congelado y, en todo el Mundo, gana presencia como material de envasado de productos cárnicos y hortofrutícolas por las claras ventajas derivadas de su utilización.

Algunas de estas ventajas para el sector hortofrutícola han quedado constatadas en un estudio realizado por el Korean Food Research Institute (Instituto de Investigación sobre Alimentos de Korea) cuya metodología, resultados y conclusiones se presentan en esta ficha.

Materiales y Métodos

Productos hortofrutícolas

Se estudiaron tres tipos de frutas frescas: uvas, manzanas y peras y tres tipos de hortalizas: calabazas, pepinos y tomates tras adquirir estos productos en un mercado de productos agrícolas de Seúl.

Métodos

- Material de envasado
 Como envase externo de frutas y
 verduras se utilizaron como
 referencia envases de cartón
 ondulado de doble capa y
 envases de Poliestireno Expandido (EPS) como contrapartida.
- Método de envasado Se escogieron 15 kg. de fruta y 10 kg. de hortalizas por envase, en buen estado, similar tamaño y color de piel, sin dañar, y seleccionadas por proceso manual, colocándolas dentro de la caja de envase con cuidado.
- Temperatura de almacenaje Las manzanas y las peras se almacenaron a 0°C y las uvas, tomates calabazas y pepinos a 25°C.
- <u>Test organoléptico</u>
 Se llevó a cabo por diez
 especialistas cualificados del
 laboratorio de envase del
 Instituto.
- Indice de pérdida de peso
 Lás pérdidas de peso se
 presentan en un porcentaje
 dividiendo el peso final entre el
 peso inicial después del
 envasado.

Tasa de variación del peso (%) = Peso real
Peso inicial

• <u>Tersura y frescura</u>
Se midió cortando verticalmente los productos a una distancia de 1cm. desde el centro utilizando

un reómetro.

ácido málico.

- <u>Tasa de acidez</u>
 Se evaluó triturando 500 g. de pulpa y posterior filtrado utilizándose NaOH para subir el pH hasta 8,1. La cantidad consumida de NaOH se traducía a su equivalencia en contenido de
- Contenido sólido soluble

 Se elaboró un extracto acuoso
 con aqua destilada.
- <u>Clorofila</u>

 Triturando 5 g. de producto y utilizando acetona como disolvente.
- <u>Contenido de Vitamina C</u>
 La cantidad de Vitamina C se midió por métodos de indoferolhydracina (método 2, 6-diclorofenol indofenol).

Efectos de los envases de eps en la conservación de la frescura de los productos hortofrutícolas

Conclusiones del Estudio

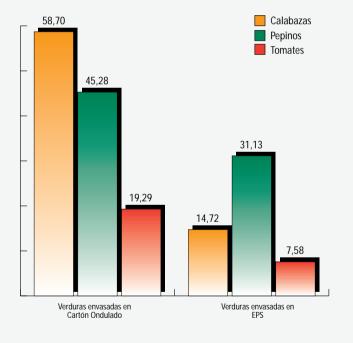
- Como resultado del test de comparación en las manzanas y peras almacenadas a 0°C, las cajas de EPS han mostrado mejores resultados que el control (caja de cartón ondulado) en lo que se refiere a la Tasa de Acidez (TA) y el Contenido Sólido Soluble (CSS). En el caso de almacenamientos mas prolongados estas mejoras quedarían más acentuadas.
- · Las uvas almacenadas en EPS a 25°C tenían más frescura que en las almacenadas en cajas control (cartón ondulado). Especialmente en lo que se refiere al contenido de vitamina C 10 días después del almacenaje fue de 1,08% mg. en la caja control, mientras que en la caja de EPS fue de 1.63%. Como resultado el contenido de vitamina C en caia de EPS fue un 5%-7% mayor que en la caja control. Respecto al peso, las mermas o el coeficiente de pérdida de peso se redujo a un 7,5% en las cajas control y a un 1,8% en las cajas de EPS

después de 75 días de almacenaje.

• En los **tomates**, la pérdida de color fue tan notable que se pudo apreciar la diferencia a simple vista. Las cualidades del producto y el contenido de clorofila se mantuvo en las cajas de EPS 7 días después de su almacenaje, mientras que el color/pig-

mentación de la clorofila se convirtió en lycopene en las cajas control. Por otro lado, además las cajas de EPS mostraron niveles de contenido sólido soluble del 13,8%, un 50% más que el nivel contenido en las cajas control que fue del 8.8%.

• En las **calabazas**, la pérdida de vitamina C fue menor en las


cajas de EPS. A temperatura ambiente, 7 días después del almacenaje, el contenido de vitamina C fue de 17,2% mg. en las cajas control y 35,5% mg. en las cajas de EPS. En las cajas de EPS se mantuvo un 200% más el contenido de Vitamina C que en las cajas control. Respecto a la cualidad del producto, en las cajas control se estropeó un 50% más que en las cajas de EPS.

• Para los **pepinos**, el contenido de clorofila fue de un 31,0 µg/ml en las cajas control en comparación con un 46,2 µg/ml en las cajas de EPS, por este motivo podemos decir que las cajas de EPS conservan mejor la frescura de los productos.

Datos relevantes del estudio de envase del Instituto Coreano de Investigación Alimentaria

Porcentaje de pérdida de Vitamina C en verduras después de 1 semana.

Porcentaje de pérdida de Vitamina C en las frutas.

-0	Frutas	Frutas
ELS?	envasadas en Cartón Ondulado	envasadas en EPS
poliestireno expandido PERAS		
% pérdida de Vit. C después de 15 días	24,20	17,53
% pérdida de Vit. C después de 56 días	37,78	22,96
MANZANAS		
% pérdida de Vit. C después de 37 dias	42,23	22.62
UVAS		
% pérdida de Vit. C después de 2 días	22,61	4,95
% pérdida de Vit. C después de 7 días	55,48	14,13
% pérdida de Vit. C después de 10 días	61,84	32,16

Efectos de los envases de eps en la conservación de la frescura de los productos hortofrutícolas

Porcentaje de pérdida de peso en las frutas.

	-0	Frutas	Frutas
	FP37	envasadas en	envasadas en
	poliestireno expandido	Cartón ondulado	EPS
PERAS			
% pérdida de peso después de 30 días		2,25	0,77
% pérdida de peso después de 50 días		7,34	0,89
% pérdida de peso después de 100 días		13,27	1,02
MANZANAS			
% pérdida de peso después de 20 días		0,34	0,19
% pérdida de peso después de 40 días		2,24	0,49
% pérdida de peso después de 60 días		4,90	0,71
% pérdida de peso después de 120 días		15,77	1,12
UVAS			
% pérdida de peso después de 30 días		1,89	1,16
% pérdida de peso después de 60 días		16,90	2,40

